Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Horticultural Science and Biotechnology ; 98(2):133-140, 2023.
Article in English | CAB Abstracts | ID: covidwho-2274742

ABSTRACT

Global food security has been significantly threatened by the Covid-19 pandemic and several prolonged challenges such as climate change, population increases, shortage of natural resources, energy crisis, and rapid urbanisation worldwide. Although numerous attempts have been made to secure resilience in the food system, many countries are suffering from hunger and malnutrition, particularly in African and some Asian countries. This review paper presents one of the sustainable farming practices - vertical farming that could play a key role in mitigating global food security in the current uncertain world. It addresses the recent development of vertical farming with advanced precision monitoring and controlling system by the Internet of Things (IoT) applications. It also provides information about the opportunities and challenges of vertical-urban agriculture and how urban agriculture meets economic, social and educational needs.

2.
The Journal of Horticultural Science and Biotechnology ; : 1-8, 2022.
Article in English | Web of Science | ID: covidwho-2123023

ABSTRACT

Global food security has been significantly threatened by the Covid-19 pandemic and several prolonged challenges such as climate change, population increases, shortage of natural resources, energy crisis, and rapid urbanisation worldwide. Although numerous attempts have been made to secure resilience in the food system, many countries are suffering from hunger and malnutrition, particularly in African and some Asian countries. This review paper presents one of the sustainable farming practices - vertical farming that could play a key role in mitigating global food security in the current uncertain world. It addresses the recent development of vertical farming with advanced precision monitoring and controlling system by the Internet of Things (IoT) applications. It also provides information about the opportunities and challenges of vertical-urban agriculture and how urban agriculture meets economic, social and educational needs.

3.
Front Cell Infect Microbiol ; 12: 850744, 2022.
Article in English | MEDLINE | ID: covidwho-1952256

ABSTRACT

The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.


Subject(s)
Coronavirus , Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Humans , Mesenchymal Stem Cells/metabolism , Umbilical Cord
4.
J Microbiol ; 60(3): 290-299, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1670004

ABSTRACT

With global expansion of the COVID-19 pandemic and the emergence of new variants, extensive efforts have been made to develop highly effective antiviral drugs and vaccines against SARS-CoV-2. The interactions of coronaviruses with host antiviral interferon pathways ultimately determine successful viral replication and SARS-CoV-2-induced pathogenesis. Innate immune receptors play an essential role in host defense against SARS-CoV-2 via the induction of IFN production and signaling. Here, we summarize the recent advances in innate immune sensing mechanisms of SARS-CoV-2 and various strategies by which SARS-CoV-2 antagonizes antiviral innate immune signaling pathways, with a particular focus on mechanisms utilized by multiple SARS-CoV-2 proteins to evade interferon induction and signaling in host cell. Understanding the underlying immune evasion mechanisms of SARS-CoV-2 is essential for the improvement of vaccines and therapeutic strategies.


Subject(s)
COVID-19 , Immune Evasion , Interferons/immunology , Antiviral Restriction Factors/immunology , COVID-19/immunology , COVID-19/virology , Humans , Immunity, Innate , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL